An α , α' -Dioxothione and Its $[4 + 2]$ **Cycloaddition with** *trans***-Cyclooctene in the Reaction of Ninhydrin with Potassium Thiotosylate**

Waldemar Adam and Bettina Fröhling*,[†]

Institut fu¨*r Organische Chemie der Uni*V*ersita*¨*t, Am Hubland, D-97074 Wu*¨*rzburg, Germany*

adam@chemie.uni-wuerzburg.de

Received June 12, 2000

ABSTRACT

In the reaction of Ninhydrin (1a)/1,2,3-indantrione (1b) with potassium thiotosylate, 1,4-oxathiin 6 is formed in up to 63% yield as the trapping product of the intermediary r**,**r′**-dioxothione 1c with** *trans***-cyclooctene (3a). Additionally, up to 18% of the available sulfur is transferred to olefin 3a to thiirane 3b through the intermediary oxathiirane.**

 α, α' -Dioxothiones RC(O)C(S)C(O)R' are elusive transients that may be prepared in situ and detected by trapping through $[4 + 2]$ cycloaddition with dienes or electron-rich dienophiles. The first such diketothione was trapped in the reaction of dibromomalonate with potassium ethyl xanthogenate;¹ a more general method is to treat β -dicarbonyl compounds with phthalimide sulfenyl chloride, followed by base-catalyzed elimination of phthalimide.² A series of α, α' -dioxothiones has been prepared and trapped according to this method, 3 but to date no other sulfur-transferring agent appears to be

available. A potentially attractive methodology for this purpose is to employ a sulfur nucleophile, which readily adds to the carbonyl group to form the corresponding thio hemiacetal⁴ but is equipped with a good leaving group on the sulfur atom to afford the desired thione. Alternatively, 1,3 elimination would afford oxathiiranes, which have recently been established as effective sulfur-transfer agents to strained alkenes.⁵

We presently report that potassium thiotosylate (**2**) constitutes such a novel sulfur-atom donor in its reaction with the highly reactive triketone of Ninhydrin (**1a**), i.e., 1,2,3 indantrione (1b), to afford the intermediary α, α' -dioxothione **1c**. Evidence for the latter has been provided by trapping through $[4 + 2]$ cycloaddition with *trans*-cyclooctene $(3a)$ and 2,3-dimethyl-1,3-butadiene (**4**).

[†] Direct correspondence to this address. FAX: Int +49-931-8884756. Internet: www-organik.chemie.uni-wuerzburg.de.

⁽¹⁾ Beelitz, K.; Ho¨hne, G.; Praefcke, K. *Z. Naturforsch.* **1978**, *33b*, 417. (2) a) Mullin, V. A.; Zolotov, A. N. *J. Gen. Chem. USSR* **¹⁹⁸⁶**, *⁵⁶*, 791- 796. (b) Capozzi, G.; Menichetti, S.; Nativi, C.; Rosi, A.; Valle, G.
Tetrahedron 1992, 48, 9023-9032. (c) Huang, N.-Z.; Lakshmikantham, *Tetrahedron* **¹⁹⁹²**, *⁴⁸*, 9023-9032. (c) Huang, N.-Z.; Lakshmikantham, M. V.; Cava, M. P. *J. Org. Chem.* **¹⁹⁸⁷**, *⁵²*, 169-172. (d) Win, W. W.; Franck, R. W. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 4510-4512.

^{(3) (}a) Capozzi, G.; Franck, R. W.; Mattioli, M.; Menichetti, S.; Nativi, C.; Valle, G. *J. Org. Chem.* **¹⁹⁹⁵**, *⁶⁰*, 6416-6426. (b) Boccardo, G.; Capozzi, G.; Giuntini, M.; Menichetti, S.; Nativi, C. *Tetrahedron* **1997**, *⁵³*, 17383-17394.

^{(4) (}a) Wipf, P.; Jeger, P.; Kim, Y. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 351–356. (b) Hafez, T. S.; Zayed, M. F.; Fahmy, A. A.; Ismail, N. A.
Phosphorus, Sulfur, Silicon Relat, Elem, **1991**, 56, 231–235

Phosphorus, Sulfur, Silicon Relat. Elem. **¹⁹⁹¹**, *⁵⁶*, 231-235. (5) Adam, W.; Deeg, O.; Weinkötz, S. *J. Org. Chem.* **1997**, 62, 7084-7085.

The thermal reaction (60 °C, $1-5$ h) of Ninhydrin (**1a**) or its 1,2,3-indantrione (**1b**) with potassium thiotosylate (**2**) (Table 1) led in the presence of an excess of *trans*-

Table 1. Product Studies of the Reaction of Ninhydrin (**1a**)/Indantrione (**1b**) with Potassium Thiotosylate (**2**) and *trans*-Cyclooctene (**3a**)

^a Determined from the 1H NMR spectra of the crude reaction mixture after centrifugation to remove the precipitate of **5**; dimethyl isophthalate was employed as internal standard (error \pm 5% of the stated values); conversion of 2 not determined because of severe overlap of NMR signals. ^b Not determinable by ¹H NMR spectroscopy because of precipitation.
^c Yield of isolated material. ^d Not determinable by ¹H NMR spectroscopy because of signal overlap with Ninhydrin (**1a**,**b**).

cyclooctene (**3a**) to 1,4-oxathiin **6** (up to 63%) and tosylate **5** (90%) as the major products. Additionally, a small amount $(11-18%)$ of *trans*-thiirane **3b** was formed. The product distribution remained the same, irrespective of whether the starting material was ninhydrin (**1a**) or its 1,2,3-indantrione (**1b**) (Table 1, entries 1 and 2). In acetonitrile (Table 1, entries ¹-4), a colorless material precipitated. This was identified as potassium tosylate (**5**), which unlike potasssium thiotosylate (**2**) is insoluble in acetonitrile. The precipitation of tosylate **5** appears to be the driving force for this reaction, which will become evident later on (cf. Scheme 2). With 2 equiv (4 equiv) of thiotosylate **2** (entries 3 and 4), the yield of thiirane **3b** was slightly increased from 11 to 16% (18%) while the amount of 1,4-oxathiin **6** remained constant. A time profile of the reaction (entry 5) showed that trione **1b** was already 90% consumed after 1 h and completely after 3 h, with no significant change in the product distribution upon an additional 2 h of heating. Thiirane **3b** persisted under these reaction conditions; it was not ring-opened nor desulfurized by the nucleophilic thiotosylate **2** even on heating for 5 h, as confirmed by an independent control experiment. In d_6 -

appears to be the reason that the reaction times were also considerably longer in DMSO than in acetonitrile and only traces of thiirane **3b** were detected. A mechanism consistent with the above experimental facts is shown in Scheme 1.

acetone, the reaction was more sluggish (entry 6), while in d_6 -DMSO (entries 7 and 8) no precipitation occurred, because the potassium tosylate (**5**) is soluble in DMSO. This solubility

Ninhydrin (**1a**) is dehydrated by thiotosylate **2** to the trione **1b**, of which the most reactive central carbonyl group is then nucleophilically attacked by thiotosylate **2** to form the tetrahedral intermediate **A**. For the latter, two possible reaction pathways may be considered: On one hand, the sulfinate group may undergo a 1,3 shift (path *a*) from the sulfur to the negatively charged oxygen atom to form the intermediate **B**. The incentive for this migration, despite the unfavored four-membered-ring transition state, is the preference of the "hard" sulfinate electrophile to reside on the "hard" oxygen nucleophile rather than on the "soft" sulfur site (HSAB principle).⁶ Adduct **B** may then eliminate tosylate ion 5 under formation of α, α' -dioxothione 1c. The overall process entails sulfur-oxygen exchange between trione **1b** and thiotosylate **2** to afford thione **1c** and tosylate **5**. On the other hand, the negatively charged oxygen atom may attack at the sulfur site (path *b*) and cyclize under 1,3 elimination of the sulfinate anion to oxathiirane **C**. In the presence of *trans*-cyclooctene (3a), α, α' -dioxothione 1c cycloadds as a heterodiene to afford the novel 1,4-oxathiin **6** (deeply red colored) as a $[4 + 2]$ cycloaddition product. Alternatively, since oxathiiranes are known for their sulfur-transferring propensity,⁵ the intermediary oxathiirane C may transfer its sulfur atom to *trans*-cyclooctene (**3a**) under formation of thiirane **3b** and trione **1b**. The possibility that episulfide **3b**

⁽⁶⁾ Pearson, R. G.; Songstand, J. *J. Am. Chem. Soc.* **1967**, *89*, 1827.

derives from extruded sulfur has been excluded by the following control experiment: A fully thermolyzed mixture of trione **1b** and thiotosylate **2**, to which *trans*-cyclooctene (**3a**) was added afterward, did not afford even traces of thiirane **3b**, although the latter persists under these conditions. Moreover, an additional control experiment confirmed that thiotosylate **2** alone did not transfer sulfur to *trans*-cyclooctene. Thus, sulfinate migration (path *a*) competes effectively with sulfinate elimination (path *b*) such that the formation of the α, α' -dioxothione **1c** intermediate dominates (Scheme 1). The yield of thiirane **3b** is not increased at the expense of the $[4 + 2]$ cycloadduct **6** (Table 1, entries 1) and 4), because the oxathiirane **C** regenerates the trione **1b** in the sulfur transfer to the *trans*-cyclooctene (**3a**); finally, trione **1b** is converted to 1,4-oxathiin **6** (pathway *a*).

The longer reaction time in DMSO (Table 1, entries 7 and 8) may be rationalized if one supposes that the 1,3 migration of the sulfinate group is an equilibrium process (Scheme 2).

Thus, in acetonitrile (entries $1-5$) this equilibrium is shifted to the right due to the fact that the eventually formed potassium tosylate is insoluble in acetonitrile. The intermediate **B**, thus, is irreversibly removed from the equilibrium, which accelerates the reaction rate. A control experiment confirmed the proposed equilibrium, since the addition of 2 equiv of tosylate **5**, right from the beginning, to the reaction mixture in DMSO as solvent (tosylate **5** soluble) inhibited the reaction; no cycloadduct **6** was detected.

The *trans* configuration of cyclooctene **3a** is preserved in cycloadduct **6**, which is indicated by the NMR data. Therefore, the last step in the formation of 1,4-oxathiin **6** (Scheme 1) is clearly a concerted $[4 + 2]$ cycloaddition with **3a**, and the α , α -dioxothione **1c** figures as a bona fide intermediate, since the carbon-sulfur double bond is essential for this compound to serve as a heterodiene partner. This is surprising, because electron-poor heterodienes such as **1c** have so far-in addition to their reactivity as dienophiles-only been trapped with electron-rich double bonds in inverse electron-demand Diels-Alder reactions. In the present case, the extraordinary reactivity of *trans*configured cyclooctene **3a** derives from inherent pyramidalization,⁷ which must prevail over electronic demand. To confirm unequivocally that cycloadduct **6** is the genuine trapping product of dioxothione **1c** with **3a**, thione **1c** was also prepared independently: Trione **1b** was treated with Lawesson reagent to yield **1c** in situ and then trapped with *trans*-cyclooctene (**3a**) to afford 1,4-oxathiin **6** as the major

product, together with considerable amounts unidentified byproducts (Scheme 3). Similarly, the independently prepared

dioxothione **1c** was also trapped with 2,3-dimethylbutadiene (4) , to give the known^{2c} dihydrothiopyran 7 and dihydropyran **8**, the trapping product of starting trione **1b**. The same products (nearly a 1:1 mixture) were also obtained in the reaction (Scheme 3) of trione **1b** with potassium thiotosylate (**2**) in the presence of 2,3-dimethylbutadiene (**4**). The mass balance of the trione in this case was >95%, whereas the corresponding mass balances in the reactions with *trans*cyclooctene (**3a**) were only 55-63% (cf. Table 1, entries ¹-8). Evidently, the dienophilic *trans*-cyclooctene (**3a**) is a moderately effective trapping agent, since as much as 45% (entries 1-5) of the intermediarily formed diketothione **1c** decomposes to unidentified products. Unfortunately, the use of the more reactive 2,3-dimethylbutadiene (**4**), but as diene partner and not as dienophile, is complicated by the fact that it reacts with the starting material, namely the 1,2,3-trione **1b**. Attempts to employ the 1-methoxycyclooctene (**9**) as the electron-rich dienophile disclosed another reactivity of the indantrione (**1b**), namely the formation of the carbonyl ene adduct **10** as the exclusive regioisomeric product (Scheme 4). It is noteworthy that this transformation constitutes the first example of a regioselective carbonyl ene reaction between a cyclic enol ether and a tricarbonyl compound.

 \overline{O} H \circ O ö Ńе

⁽⁷⁾ Leong, M. K.; Mastrykov, V. S.; Boggs, J. E. *J. Mol. Struct.* **1998**, *⁴⁴⁵*, 149-160.

In conclusion, the reaction between 1,2,3-indantrione (**1b**) and potassium thiotosylate (**2**) has provided a novel route (path *a* in Scheme 1) to its α, α' -dioxothione through the unprecedented sulfur-to-oxygen 1,3 migration of the sulfinate group in the tetrahedral adduct **A**. A promising feature of the latter adduct is its collapse through nucleophilic substitution on sulfur to the intermediary oxathiirane **C** (path b in Scheme 1), a class of highly reactive species which have so far only been accessible by photochemical or thermal

cyclization of sulfines.8 This opens up a new perspective in the in situ generation of the elusive oxathiiranes for sulfurtransfer purposes.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous financial support.

Supporting Information Available: Experimental procedures and full characterization for products **6** and **10** with the pertinent NMR spectral data. This material is available free of charge in the Internet at http://pubs.acs.org.

OL000154J

^{(8) (}a) Snyder, J. P. *J. Am. Chem. Soc.* **¹⁹⁷⁴**, *⁹⁶*, 5005-5007. (b) Carlsen, L.; Harrit, N.; Holm, A. *J. Chem. Soc., Perkin Trans. 1* **¹⁹⁷⁶**, 1404-1407. (c) Karlstro¨m, G.; Roos, B. O.; Carlsen, L. *J. Am. Chem. Soc.* **1984**, *106*, 1557-1561. (d) Adam, W.; Deeg, O.; Weinkötz, S. *J. Org. Chem.* 1997, *⁶²*, 7084-7085.